Characterization of the Rhizobium (Sinorhizobium) meliloti high- and low-affinity phosphate uptake systems.

نویسندگان

  • R T Voegele
  • S Bardin
  • T M Finan
چکیده

Genetic studies have suggested that Rhizobium (Sinorhizobium) meliloti contains two distinct phosphate (Pi) transport systems, encoded by the phoCDET genes and the orfA-pit genes, respectively. Here we present data which show that the ABC-type PhoCDET system has a high affinity for Pi (Km, 0.2 microM) and that Pi uptake by this system is severely inhibited by phosphonates. This high-affinity uptake system was induced under Pi-limiting conditions and was repressed in the presence of excess Pi. Uptake via the OrfA-Pit system was examined in (i) a phoC mutant which showed increased expression of the orfA-pit genes as a result of a promoter-up mutation and (ii) a phoB mutant (PhoB is required for phoCDET expression). Pi uptake in both strains exhibited saturation kinetics (Km, 1 to 2 microM) and was not inhibited by phosphonates. This uptake system was active in wild-type cells grown with excess Pi and appeared to be repressed when the cells were starved for Pi. Thus, our biochemical data show that the OrfA-Pit and PhoCDET uptake systems are differentially expressed depending on the state of the cell with respect to phosphate availability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti.

Bacteroids isolated from alfalfa nodules induced by Rhizobium meliloti 102F34 transported glycine betaine at a constant rate for up to 30 min. Addition of sodium salts greatly increased the uptake activity, whereas other salts or non-electrolytes had less effect. The apparent Km for glycine betaine uptake was 8.3 microM and V was about 0.84 nmol min-1 (mg protein)-1 in the presence of 200 mM-Na...

متن کامل

Characterization of a Snorhizobium meliloti ATP-binding cassette histidine transporter also involved in betaine and proline uptake.

The symbiotic soil bacterium Sinorhizobium meliloti uses the compatible solutes glycine betaine and proline betaine for both protection against osmotic stress and, at low osmolarities, as an energy source. A PCR strategy based on conserved domains in components of the glycine betaine uptake systems from Escherichia coli (ProU) and Bacillus subtilis (OpuA and OpuC) allowed us to identify a highl...

متن کامل

Occurrence of choline and glycine betaine uptake and metabolism in the family rhizobiaceae and their roles in osmoprotection

The role of glycine betaine and choline in osmoprotection of various Rhizobium, Sinorhizobium, Mesorhizobium, Agrobacterium, and Bradyrhizobium reference strains which display a large variation in salt tolerance was investigated. When externally provided, both compounds enhanced the growth of Rhizobium tropici, Sinorhizobium meliloti, Sinorhizobium fredii, Rhizobium galegae, Agrobacterium tumef...

متن کامل

A phosphate transport system is required for symbiotic nitrogen fixation by Rhizobium meliloti.

The bacterium Rhizobium meliloti forms N2-fixing root nodules on alfalfa plants. The ndvF locus, located on the 1,700-kb pEXO megaplasmid of R. meliloti, is required for nodule invasion and N2 fixation. Here we report that ndvF contains four genes, phoCDET, which encode an ABC-type transport system for the uptake of Pi into the bacteria. The PhoC and PhoD proteins are homologous to the Escheric...

متن کامل

Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti.

Sinorhizobium meliloti (Rhizobium meliloti) 2011 has the ability to produce the two acidic exopolysaccharides succinoglycan (EPS I) and galactoglucan (EPS II). EPS I is a branched heteropolysaccharide composed of octasaccharide repeating units, whereas EPS II is a linear heteropolysaccharide consisting of disaccharide subunits. The exo-exs and exp gene clusters are involved in the biosynthesis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 23  شماره 

صفحات  -

تاریخ انتشار 1997